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Discriminating wines according to their denomination of origin using cost-effective techniques is
something that attracts the attention of different industrial sectors. In search of simplicity, direct UV-
visible spectrophotometric techniques and different multivariate statistical techniques are used with
admissible results to characterize wine produced in specific regions. However, most of the reported
classification methods do not exploit all of the statistical relations in the investigated dataset and are
inherently affected by the presence of outliers. The aim of this paper is to test novel classification
methods such as support vector machines as a means of improving the classification rate when
UV-visible spectrophotometric methods are used to discriminate wines. The advantages of such a
discrimination tool are demonstrated when classification rates are compared for a large number of
Spanish red and white wines and classification rates above 96% are achieved. The proposed
methodology also enables the selection of the most relevant wavelengths for sample discrimination.
The proposed methodology also enables the selection of the most relevant wavelengths for sample
discrimination.
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INTRODUCTION

The European Union (EU) possesses 45% of the world’s
vineyards, and its wine production accounts for 60% of the
global market. In addition, almost 60% of the wine produced
worldwide is consumed in Europe, which makes it the leading
wine exporter and at the same time the largest import market
in the world. The number of countries producing and exporting
wine, particularly non-European, is increasing as is the relevance
of this sector within the food industry. Wine producers and
exporters, regulators and consumers are all demanding analytical
tools for cost-effective routine quality control (1). The quality
of wines primarily depends on the type of grape, the climate,
the soil, and the different techniques used during the cultivation
and production. In search of a clearer, simpler, and more
transparent policy on wine quality, the EU has established two
classes of wines, those which possess a geographical indication
and those which do not. Spain possesses 70 quality wines
produced in specified regions (“VCPRD” on the labels), which
are clearly identified and controlled by different governing
bodies at both the national and regional level. Furthermore, a
wine produced in a specific region with well-defined cultivation

and elaboration practices verifiable by the competent bodies is
awarded the Denomination of Origin (DO). This denomination
guarantees the provenance indicated on the label as well as a
superior quality. The purpose of this paper is to investigate a
new methodology for the cost-efficient assessment of the
denomination of origin of wines exemplified by a range of
Spanish DOs.

Some laboratories study the denomination of origin or the
authenticity of a wine using labor-intensive and costly analyses
which look for specific chemical features that can be identified
with a given geographical origin. Examples of these chemical
features include nonvolatile acids and amino acids (2), phenolic
compounds (3), the concentration of metal ions (4), or isotopic
determination (5). Each type of analysis is based on instrumental
techniques that, being selective and reliable, require experienced
operators and are difficult to automate and implement in routine
and on-site applications.

Alternatively, nonsophisticated techniques and direct mea-
surements, when combined with multivariate analysis, have
demonstrated the ability to characterize wines through rather
simple procedures (1). Some of these statistical procedures point
out that it is possible to discriminate one particular denomination
of origin from others using UV-visible spectrophotometry
(6-7). Research has also been done on near-infrared spectros-
copy to discriminate the geographical origin of Tempranillo
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wines from Australia and Spain (8). The main advantage of
this approach is simplicity because the “intelligence” or, in other
words, the robustness of the procedure relies on the pattern
recognition system, in which the principal component analysis
(PCA) and the soft independent modeling of class analogies
(SIMCA) are commonly used. The first results are promising,
but these methods need to be improved if they are to be
compared with traditional techniques and, especially, if the
challenge is to discriminate between several DOs in which
differences may be more subtle than the type of grape. Other
pattern recognition methods, commonly used in chemometrics
and aimed at obtaining better discrimination rates, can also be
applied (9). These include nearest neighbor (k-NN), partial least-
squares discriminant analysis (PLS-DA), and artificial neural
networks. However, the complexity of these statistical tools
negatively affects the slightly improved classification rate
because their implementation makes routine analysis rather
difficult.

As was anticipated, the aim of this paper is to demonstrate
how a simple and nonselective technique (UV-visible spec-
trophotometry) in combination with modern classification
techniques, can be used to discriminate between several Spanish
wine DOs, improving the classification rate when compared to
other multivariate analyses. The rationale of the proposed
method is to use a classifier that, once trained, requires only a
few operations and gives reliable results. Support vector

machines (SVM) (10) is a rather recent classification method
that does not need a large number of samples to be trained and
is not affected by the presence of outliers. SVM have been
successfully applied to several classification problems, especially
with the standard University of California Irvine (UCI) datasets.
Two recent papers report on the use of a standard dataset
containing information for wine discrimination with a high level
of accuracy (11, 12). However, the information contained in
this dataset only discriminates between three Italian wines, and
no chemical information is provided regarding the variables.
We believe that the present work reinforces the advantages of
SVMs for sample classification and contributes to the creation
of a cost-effective quality-control tool for both regulators and
industrial sectors. Finally and considering that one of the most
important steps in systems that use sensors and pattern clas-
sification data processing is the so-called feature selection (13),
this paper also attempts to select the most relevant wavelengths
for classification purposes and to verify the resolution of the
spectrophotometer enabling DO discrimination. A new method
is proposed to cover this objective.

MATERIALS AND METHODS

Sample Preparation and Data Acquisition.A number of
white and red wines from various Spanish DO was selected for
this study. Each DO included different brands of wines as is
summarized inTable 1 andTable 2 for white and red wines,

Table 1. Description of the Samples of the White Wines Tested

denomination
of origin (DO)

commercial
brand

no. of
samples predominant grape(s)

La Mancha Añadas de Oro 200 9 varietal: Airén
Estola 2004 6 80% Airén and Chardonnay

Madrid Vega Madroño 2004 4 Malvar and Airén
Puerta de Alcalá 2003 7 Malvar
Puerta de Alcalá 2004 9 Malvar

Penedés Sant Llach 2004 9 Macabeo, Xarel.lo and Parellada
Vall de Juy 2005 3 Macabeo, Xarel.lo and Parellada

Rioja Viña Espolón 2004 10 varietal:Viura
Barón de Urzande 2005 5 Viura and Verdejo
Viña Amate 2005 4 varietal:Viura

Valdepeñas Viña Albali 2004 9 varietal:Macabeo
Señorı́o de Ojailén 2004 7 varietal: Airén

Table 2. Description of the Samples of the Red Wines Tested

denomination
of origin (DO) commercial brand

no. of
samples predominant grapes

La Mancha Añadas de Oro 2004 6 varietal: Tempranillo
Viña Alambrada 2005 3 Tempranillo and Garnacha

Madrid Castizo 2004 4 Tempranillo and Garnacha
Puerta de Alcalá 2004 3 varietal: Tempranillo
Puerta de Hierro 2005 4 Tempranillo and Garnacha
Puerta Hierro 2004 9 Tempranillo and Garnacha

Penedés Sant Llach 2004 8 Tempranillo and Merlot
Puig de Montlor 2004 3 Merlot and Ull de Llebre (Tempranillo)
Val de Juy 2005 3 varietal: Tempranillo

Rioja Viña Espolón 2004 10 Tempranillo and Garnacha
Barón de Urzande 2005 6 80% Tempranillo and Garnacha
Viña Amate 2005 4 70% Tempranillo and Garnacha

Valdepeñas Viña Albali 2004 9 90% Tempranillo and Cabernet-Sauvignon
Señorio de Ojailén 2004 7 varietal: Tempranillo
Señorio de Ojailén Reserva 2001 7 varietal: Tempranillo

Ribera Del Duero Dehesa de la Jara 2004 15 varietal: Tempranillo
Vega de Nava 2004 9 varietal: Tempranillo
Barón de Santuy 2004 7 varietal: Tempranillo

Toro Gran Cermeño Crianza 2002 15 varietal: Tinta de Toro
Somontano Montesierra 2005 9 Tempranillo, Moristel and Cabernet-Sauvignon

Viñas del Vero 2005 12 Merlot and Cabernet-Sauvignon
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respectively. Overall, 82 white wine samples and a total of 153
red wine samples were scanned. The spectrophotometric
measurements were obtained using a Shimadzu UV-vis (UV-
160A) spectrophotometer. The absorbance spectra were recorded
in duplicate, with a working range from 200 to 800 nm and
with a step resolution of 10 nm, but to be sure that this low
resolution had no influence on the classification results, the
spectra were also recorded with a step resolution of 1 nm. All
samples were tested immediately after the wine bottles were
opened to prevent oxidation reactions. Prior to these measure-
ments, the samples were filtrated through 0.45µm membranes
to remove any possible solids. Filtrated wines were then diluted
with water in a 1:6 ratio. Most wines were young since wines
aged in oak barrels may include additional characteristics that
could cover up the original properties.

Support Vector Machines. Presently, the use of SVM for
classification purposes is gaining attention in chemical systems.
SVM is a binary discriminant classification tool that is based
on the statistical learning theory (SLT). To visualize how SVM
work, focus onFigure 1. The question that should be asked is,
what is the best plane separating both classes? All of the planes
drawn separate the training set, which is to say that they
minimize the empirical risk. However, to find the best plane,
we have to think that the classifier will have to discriminate
those samples in the future. The answer to this question is
provided in ref10, describing how the best plane is the one
that maximizes the separation margin. Thus, inFigure 1 the
best plane is drawn with a continuous line. The maximization
in the margin implies that only a few samples of the training
set, namely those samples that are in the boundaries of the
margin zone, influence the decision function. The samples that
have an influence on the decision function are called support
vectors. From the training phase, a decision function is obtained
in such a way that new samples, spectrophotometric signals in
our case, are classified according to:

wherel is the number of training samples,yi is the class of the
training samplei (+1,-1), andsi are the training samples. The
Ri andb values are obtained as a result of the training phase.
For those training patterns that are not support vectors, theRi

value is zero, whereas for support vectors this value is greater

than zero. Theb parameter is also obtained in the training phase
in such a way that the function decision for support vectors is
equal to one. The above explanation is only valid for cases in
which the training data are separable by a hyperplane, but in
practice, most of the chemometric experiments tend to be more
like Figure 2, in which it is not possible to find a linear
hyperplane that separates the samples. In this situation, SVM
theory also searches for the hyperplane that maximizes the
margin while allowing a number of training errors. The number
of errors allowed is determined by a regularization parameter
C that has to be fixed before training. Thus, when a training
dataset is evaluated, it is divided into those samples that have
no influence on the margin and are correctly classified with an
Ri ) 0 value, those samples that are at the limits of the margin
with a value between 0< Ri < C, and those samples that are
in the margin zone or are poorly classified with a value ofRi )
C and which are usually called second-type support vectors. In
this case, the decision function is:

whereNs is the number of training samples withRi greater than
zero or support vectors. The SVM theory with lineal hyperplanes
has been described, but there are many problems where it is
interesting to have decision functions based on nonlinear
boundaries. The SVM theory can be then extended using kernel
functions (14), in which the decision function is:

Among all the advantages that SVM provide, we can highlight
the fact that having a maximum margin allows better future
samples to be classified once the model has been built.
Moreover, there are very few parameters to tune or select a
priori. One of the typical disadvantages when comparing SVM
to other methods is that SVM were designed to solve two-class
problems and extending them to multiclass problems is still an
open research field. There are also other disadvantages when
comparing them with nondiscriminant methods like SIMCA
such as that this method can classify a sample into several
classes or none of them. However, in this paper the modification
described in ref15was used which adds a posterior stage which

Figure 1. Training dataset and several linear planes that separate the
classes.

fx ) sign(∑
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Figure 2. Dataset impossible to be separated by a linear plane without
allowing training errors.
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makes it more probable to belong to a single class. Therefore,
with this method the advantages provided by nondiscriminant
functions are able to be kept.

The method selected was to use linear kernels as the result
was worse with nonlinear kernels and the number of operations
required in the test phase is several orders of magnitude greater.
The software used was a modification of ref16 developed in
our research group to adapt the abovementioned posterior
probability stage.

Other Pattern Recognition Methods.One of the primary
goals of this paper is to compare SVM with those traditional
pattern recognition methods employed in the chemometric field
such us SIMCA, PLS-DA, NN-MLP, and k-NN. The software
used to train and test SIMCA and k-NN was developed by our
research group and written in Matlab language. Before making
this comparison spectrophotometric signals were mean-centered
and preprocessed to have(1 variance.

k-Nearest neighbor was used with several nearest-neighbor
values, finally selecting a total of three neighbors. The SIMCA
method was developed with a first stage where a PCA was done
which reduces the X-space to two components. After that, a
confidence interval of 95% is selected to train the system. The
NN-MLP software used was the Matlab Neural Network
Toolbox. Several parameters have to be tuned in order for a
neural network to be developed. In our case, after testing several
combinations, we selected an NN-MLP with 40 neurons with
sigmoidal function in the hidden layer and a linear function in
the output layer. The PLS-DA software used was developed
by eigenvector.

In order to compare the different classification methods
mentioned with the proposal of using SVM, a performance
measure is needed. This required the definition of the accuracy
(Fi) which was calculated as follows:

whered is the length of the test set,y(k) is the real DO of the
wine k, andŷ(k) is the estimated label found by the classifier.

It is very common in chemometrics to compare classifiers
using the cross-validation procedure since the number of samples
is reduced compared to other pattern recognition problems. For
cross validation, each dataset, red and white wines, was divided
into five sections. In every step, four sections were used as
training patterns, and the remaining samples were used to test
the classifier and to obtain the accuracy of each DO. The
criterion used to make the sections was a random composition
with an agent making sure that in every section at least one
sample of each class was present. TheFi calculated is then the
mean of the accuracies obtained in the cross-validation steps.
The global performance of each classifier, the total accuracy,
F, is finally calculated as the mean of the accuracies obtained
for each DO. False negatives are another important measurement
when comparing different classifiers. This measurement is
defined as the percentage of samples of one class that are
classified as any of the other classes.

On the other hand, we would like to study the influence of
the brand in a DO. The second experiment done consisted of
building two datasets per each wine, white and red. One dataset
was used to train or calibrate the classifier, and the other, to
test the accuracy and false negatives. The test dataset was

composed of a randomly selected brand per each DO, and the
training set was composed of the rest of the brands.

Feature Selection.The use of all variables for classification
purposes is not an adequate strategy because it produces the
so-called “curse of dimensionality”. If variables are not selected,
the results can be negatively affected because of the limitations
caused by handling features that are not relevant. Thus, selecting
the key variables, wavelengths in this paper, becomes one of
the most crucial steps in chemometric methods based on pattern
recognition. Moreover, feature selection also helps to decide
on the most adequate technical conditions. Increasing the
resolution of the wavelengths scanned, in an effort to obtain
better results, will not necessarily improve classification ac-
curacy.

Formally, the feature selection problem consists of finding a
subsetCd of d discrete variables within the whole setH of D
available wavelengths which minimizes an adopted criterion.
When the criterion is based on the results given by the classifier
used, it is said that the feature selection method is a closed-
loop or a wrapper approach, whereas if it is based on another
type of measurement, it is said that is an open-loop or a filter
approach. An example of the filter approach is the commonly
used Fischer criterion selection (17). The problem with methods
based on this approach is that they are not coherent with the
classifier used. Wrapper approach methods are known to be
more reliable than filter approach methods although the former
require more operations in the training stage. Since the critical
part of our design is the test phase and not the training phase,
this paper follows a wrapper approach. The optimal feature
selection method is the exhaustive search of all possible
combinations (presence/no presence). However, if the problem
needs to take a large number of features (wavelengths), the
number of combinations makes this method unfeasible.

Some of the most common suboptimal search methods
include sequential forward selection (SFS) and sequential
backward selection (SBS) (18). Although both simple, these
methods do not take into account the possible relationships
between features and suffer from the so-called “nesting-effect”.
Genetic algorithms (GA) are also used for feature selection (19)
using the relationship between proximal features as a way of
guiding the search. If this relationship is not present in the
problem under study, or it is unknown, the use of GA for feature
selection requires a significant number of generations to find
an optimal value. The oscillating search method (20) avoids
the nesting effect and yields good results, but the final number
of features must be known a priori. This paper proposes a new
method aimed at suppressing this requirement. The procedure
can be summarized in the following steps:

1. Initialization. The first step of the algorithm is to execute
the SFS procedure. As a result of this execution only a few
wavelengths of the spectra are taken into account to discriminate
wines. A new classifier is trained with only those selected
wavelengths. This classifier has an obtained errorEd. From this
initial step there is a set of selected wavelengths and a set of
discarded wavelengths.

2. Down-swing. From the set of selected wavelengths, remove
the one that achieves the minimum errorEd-o, that is, the error
of the classifier built using all of the selected wavelengths except
for the one that was removed, calledw1. Add the best
wavelength from the discarded set, labeledw2, and calculate
the newEdn, that is, the error of the classifier built using all of
the selected wavelengths except for the one that was removed
and with the best wavelength from the discarded set added. If
the errorEd-o is smaller than eitherEd or Edn, reduce the feature

Fi )
1

d
∑
k)1

d

δ (k)

δ (k) ) {1 ŷ(k) ) y(k)

0 ŷ(k) * y(k)
(4)
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set by removing the worst wavelength from the selected set, so
that the number of selected features is reduced to one.

3. Look for changes. IfEdn is smaller thanEd, change the
wavelengths in such a way thatw1 now belongs to the set of
discarded wavelengths andw2 belongs to the selected set and
mark that changes were made in this step.

4. Up-swing. Add the best wavelength from the discarded
set, labeledw3 and calculate the newEd+o, that is, the error of
the classifier built using all of the wavelengths from the selected
set plusw3. Then, remove the worst wavelength,w4, from the
set of selected wavelengths and calculate the newEdn. If the
errorEd+o is smaller thanEd or Edn, increase the set of selected
features by addingw3 and go to Step 2.

5. Look for changes. If theEdn is smaller thanEd, change the
wavelengths in such a way thatw1 now belongs to the discarded
set andw2 belongs to the selected set, and mark that changes
were made in this step.

6. If changes were made to the set of selected wavelengths,
repeat from Step 2.

7. If no changes were made, the algorithm is repeated from
Step 2, but instead of removing and adding one wavelength
each time, now pairs of wavelengths are considered. When pairs
of wavelengths do not produce changes in the above steps, the
search can be increased to consider groups ofn wavelengths.
The algorithm stops when the numbern reaches a previous fixed
value. In our experiments, the maximum value allowed forn
was four.

RESULTS AND DISCUSSION

Comparing SVM to Other Classifiers. The first experiment
was composed of two different datasets created by separating
the white wines from the red wines. Every sample was labeled
according to its DO. The first comparison was done with
principal component analysis (PCA) which, although not a
classification method itself, is widely used in chemometrics due
to the graphical concept the resulting score and loading plot
offers.Figure 3 andFigure 4 show the plots obtained for white
and red wines, respectively, with the PCA method. Both figures
clearly show the limitations of PCA in discriminating this
problem, that is to say, in separating wine samples from different
specific regions.

Further comparisons with other classification methods were
made with the estimation of the accuracy and false negatives
for each DO and with a cross-validation procedure. The results

of these comparisons are presented inTable 3 andTable 4 for
white and red wines, respectively. The comparison of the
average accuracy shows that SVM performs better than other
classifiers for discriminating the specific regions within the two
sets of wines, white and red. Further comparisons of the
accuracies obtained with SVM and other classifiers for each
DO within its dataset also show the former to performance
better. With the exception of three cases, white Valdepeñas and
red Somontano, both with k-NN, and red Ribera del Duero with
SIMCA, the discrimination performance by SVM for each DO
within the corresponding dataset is always higher. The com-
parison also shows that neural networks classify the DO fairly
well, but the number of operations needed in the test phase is
several times higher than with SVM. It is worth mentioning
that k-NN, SIMCA, and PLS-DA, although extensively used
in chemometrics, do not provide results as good as SVM, at

Figure 3. PCA scores on the wavelength variables obtained from 82
samples of Spanish white wines from five specific regions.

Figure 4. PCA scores on the wavelength variables obtained from 153
samples of Spanish red wines from eight specific regions.

Table 3. Comparison of Accuracies and False Negatives in
Percentage Obtained with Different Classifying Methods with 82
Samples of White Wines and Cross-validation Method

SVM NN-MLP kNN SIMCA PLS-DA

DO F FN F FN F FN F FN F FN

La Mancha 93.33 0.00 93.33 0.00 93.33 0.00 86.67 0.00 93.33 0.00
Madrid 96.00 2.18 96.00 2.18 86.00 0.00 93.33 19.08 96.00 0.00
Penedés 100 1.33 100 1.33 100 2.33 70.00 0.00 100 1.33
Rioja 100 0.00 98.53 0.00 100 0.00 85.00 0.00 93.33 3.09
Valdepeñas 93.33 1.13 93.33 1.13 100 3.77 80.00 2.52 93.33 0.00

average 96.53 0.93 96.24 0.93 95.87 1.22 83.00 4.32 95.20 0.88

Table 4. Comparison of Accuracies and False Negatives in
Percentage Obtained with Different Classifying Methods with 153
Samples of Red Wines and Cross-Validation Method

SVM NN kNN SIMCA PLS-DA

DO F FN F FN F FN F FN F FN

La Mancha 100 0.00 100 0.00 93.33 5.88 62.22 0.00 0.00 0.00
Madrid 96.00 0.00 96.00 0.00 75.00 2.88 95.00 15.52 87.00 2.56
Penedes 100 0.47 100 0.47 91.67 0.00 34.17 0.82 85.00 0.47
Rioja 100 1.78 100 1.78 80.00 3.15 76.67 0.79 80.00 1.26
Valdepeñas 93.33 0.68 93.33 0.68 86.67 0.72 93.33 0.00 86.67 0.72
Ribera Del

Duero
97.14 0.44 96.67 0.44 89.29 2.24 97.50 2.27 97.14 1.31

Toro 100 0.00 100 0.00 95.00 0.00 80.00 0.00 100 6.38
Somontano 96.67 0.00 93.33 0.00 100 1.42 93.33 0.00 100 3.79

average 97.89 0.42 97.42 0.42 88.87 2.04 79.03 2.42 79.48 2.06
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least for this particular problem. The classification of white
wines seems to be more challenging than that of red wines.
Particularly, white wines from La Mancha, Madrid, and Valde-
peñas could hardly ever be discriminated. This misclassification
may be due to the geographical proximity of these three regions
which may conceal the intrinsic characteristics of the different
grapes. For instance, La Mancha white wines are primarily
elaborated with Airén grapes, while among the white wines from
Valdepeñas used in this study one is elaborated with Macabeo
and the other one with Airén grapes. The other two white wines
with DO are clearly discriminated. Rioja and Penedes constitute
rather different geographical locations, and both use Macabeo
or Viura grapes in the elaboration of white wines, but Penedes
white wines also include Xarelo and Parellada grapes. The
results for eight different DO of red wines are shown inTable
4. In this case, the geographical proximity of three specific
regions (La Mancha, Madrid, and Valdepeñas) and the pre-
dominant use of Tempranillo to elaborate these red wines do
not seem to negatively affect the robustness of UV-visible
spectrophotometry and SVM in classifying red wines according
to their specific regions. It is not surprising that red wines from
the Toro region are almost perfectly classified irrespective of
the classifier used (with the exception of SIMCA). These wines
are well-recognized because of their dark color, nearly black,
being elaborated with “tinta de toro” (Toro ink) grape.

Although presented results point out that UV-visible spec-
trophotometry combined with SVM can be considered as a
simple and reliable method to prevent fraud in DO, it should
be considered that different brands inside a DO can produce
wines with significant differences. As it was mentioned in the
Materials and Methods section, the second experiment built two
datasets, keeping out a brand per each DO.Table 5 andTable
6 show the results obtained whith this second experiments. It
is interesting to see how the conclusions abovementioned with
the cross-validation procedure can be applied to the results
obtained with this second experiment. SVM with a linear kernel
is again the best classifier for red and white wines, but the
accuracy is quite worse than in the previous experiment. This

is due to the fact that different brands provide different
characteristics although all the brands are in specific region, as
it has been reported in ref22. However, this experiment is also
interesting to demonstrate that there are some common factors
within a DO and SVM performs better than the rest of classifiers
tested.

It should be mentioned that both experiments were repeated
with a 1-nm step resolution with quite similar results. As one
of the targets of the paper was to search for nonexpensive
devices, the 10-nm resolution is presented.

Feature Selection.As was previously mentioned, the selec-
tion of the most relevant wavelengths has a double function
for discrimination purposes. On the one hand, the curse of
dimensionality is avoided, facilitating classification by removing
those features that only add noise. But on the other hand, it
allows us to verify that the wavelength resolution is sufficient
enough to discriminate between wines. Once this selection is
made, further variable resolutions can be tested in an effort to
obtain better classification accuracy. The selection method
applied in this paper is based on the wrapper approach, meaning
that a classifier method has to be selected first. SVM with linear
kernel was chosen since its results were better when compared
with other classification techniques. The method used to evaluate
the performance of a combination of features was a 5-cross
validation obtained when training and testing only takes into
account those features under consideration.

Since the selection of the most important wavelengths is made
using the training set itself, we have separated three sets to test
red wines and three different sets to do the same for white wines.
The result of this exercise for red wines, plotted as global
accuracy, is depicted inFigure 5. We start with the minimum
number of features obtained from the proposed algorithm, and
then the best feature of all the remaining sets is added. This
figure shows that the global accuracy of the independent test
sets does not improve when more wavelengths are added. In
some cases, training the classifier with a larger number of
variables negatively affects the resulting accuracy. This is due
to the previously mentioned curse of dimensionality, reflecting

Table 5. Comparison of Accuracies and False Negatives in Percentage Obtained for White Wines with Different Classifying Methods with Brands
Not Included in the Training Phase

SVM NN-MLP kNN SIMCA PLS-DA

DO F FN F FN F FN F FN F FN

La Mancha 66.67 11.11 50.00 16.67 0.00 33.33 0.00 33.33 33.33 22.22
Madrid 50.00 10.00 25.00 15.00 0.00 20.00 0.00 20.00 25.00 15.00
Penedés 100 0.00 100 0.00 100 0.00 100 0.00 100 0.00
Rioja 100 0.00 100 0.00 75.00 5.00 75.00 5.00 100 0.00
Valdepeñas 71.43 11.76 57.14 17.65 42.86 23.53 42.86 23.53 57.14 17.65

average 77.62 6.58 66.43 9.86 43.57 16.37 43.57 16.37 63.09 10.97

Table 6. Comparison of Accuracies and False Negatives in Percentage Obtained for Red Wines with Different Classifying Methods with Brands Not
Included in the Training Phase

SVM NN kNN SIMCA PLS-DA

DO F FN F FN F FN F FN F FN

La Mancha 66.67 2.08 66.67 2.08 0.00 6.25 0.00 6.25 0.00 6.25
Madrid 66.67 2.08 66.67 2.08 33.33 4.17 33.33 4.17 66.67 2.08
Penedes 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00
Rioja 75.00 2.13 75.00 2.13 25.00 6.38 50.00 4.26 50.00 4.26
Valdepeñas 71.43 4.55 57.14 6.82 28.57 11.36 28.57 11.36 42.86 9.09
Ribera Del Duero 71.43 4.55 71.43 4.55 57.14 6.82 0.00 15.91 0.00 15.91
Toro 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00
Somontano 77.78 4.76 66.67 7.14 33.33 14.29 22.22 16.67 33.33 14.29
average 78.62 2.52 75.45 3.10 47.17 6.16 41.77 7.33 49.11 6.48
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the difficulty of a classifier to work with a high number of
features including wavelengths that only introduce noise into
the system.Table 7 summarizes the wavelengths obtained for
each wine. InFigure 6, these relevant wavelengths are shown
with several representative spectra for each class of white wine
where it is possible to notice that the proposed wavelength
selection method chose those wavelengths which were most
important in separating the different wines. As expected, the
relevant wavelengths in the discrimination of white wines fall
within the range of 240-400 nm. Similar conclusions have
recently been reported (8) and linked to the presence of esters
from hydroxycinnamic acids. This phenomenon was equally
expected to be applicable to red wines. The range of key
variables, 290-800 nm, also includes the visible and NIR
wavelengths which most likely reflect the presence of antho-
cyans, their derivatives, and/or other phenolic compounds, an
expected result since the concentration and profile of wine
anthocyanins is affected by the variety of grape and the
vinification technique used (21).

In conclusion, the novelty of this paper rests on the use of
UV-visible spectrophotometry combined with SVM as a
reliable analytical tool in order to discriminate the wines
produced in the different specific regions of Spain. The
reliability of the proposed methodology is demonstrated and
further validated by calculating the resulting accuracy and by
comparing it with other frequently used chemometric classifiers.
SIMCA, k-NN, and PLS-DA seem to require more selective
techniques/variables than SVM if a large variety of wines is to
be discriminated according to the specific region in which they
are produced. Both SVM and NN-MPL can solve this problem
using UV-visible spectral data, although SVM is preferred due
to its inherent simplicity when compared to neural networks.
However, it is important to take into account that each brand
in the same DO can present significant differences. In order to
prevent fraud it is necessary to include in the training set an
important number of different brands. A second contribution
of this paper consists of proposing a new method for selecting
the most important wavelengths that affect the classification rate.
The results obtained recommend the suppression of nonrelevant
wavelengths in search of better accuracy. The importance of
these conclusions relies on the design of real-time systems,
where we can focus on simpler devices.

Future work will discuss the research being done on the
combination of other simple instrumental techniques based on
electrochemical data, e.g., voltammetry, to improve the ability
to discriminate in this particular problem. Important research
is also being done to improve the proposed method by means
of parametric analysis of the spectra. Thus, instead of analyzing
raw spectra, measurements can be obtained such as first- and
second-order derivatives to obtain simpler classifiers.
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